
EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 1

EGC 455

SOC Design &Verification

Functional Verification of Hardware

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

As presented by IBM

SUNY – New Paltz
Elect. & Comp. Eng.

Speakers

 IBM-Z Hardware Verification
 Shaun Uldrikis – Core Verification Co-lead
 Divya Joshi - Core Verification Co-lead
 Luke Buschmann – Unit Verification Co-lead

1

2

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 2

SUNY – New Paltz
Elect. & Comp. Eng.

References

 Writing Testbenches using SystemVerilog (2006)

By Janick Bergeron

 Slide decks
 John Goss (IBM)
 Gerrit Koch (IBM)
 Bruce Wile (IBM)

SUNY – New Paltz
Elect. & Comp. Eng.

Day 2
 Testbench options

 Structure of an environment

 Constrained random, directed

 White box, black box, grey box

 Simulation & Regression

 Verification Planning
 Test Plan

 What needs to be checked?

 What metrics indicate you are done?

 Coverage

 Who else will use the testbench? (re-use)

3

4

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 3

SUNY – New Paltz
Elect. & Comp. Eng.

Basic Verification Environment
Verification methodologies differ
mostly in:
• How and when (online vs. offline)

testcases / test patterns are
generated

• How results are predicted and
when these are compared to actual
results from device under test

• Choice of underlying tools and
infrastructure

• Abstraction level of reference
model

• Completeness of state space
exploration

• Choice of programming language

SUNY – New Paltz
Elect. & Comp. Eng.

Environment Structure

DUT
Mon1

Mon3

Mon2

Generator(s) /
Sequencer(s)

UnitMonitor / Scoreboard
“when seeing A,

expect B to happen”

“B”“A”

Driver

5

6

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 4

SUNY – New Paltz
Elect. & Comp. Eng.

Environment Building Blocks 1
 Driver - Low level objects which cover the requirements for

accurately exercising the signal(s)/bus. This should adhere to
the specification bus protocol rules, unless it needs to
support error injection features.

 Generator - Creates valid transactions, or sequences of
transactions, to be delivered to Drivers for handling.
Testbench Generator - Create all testcase operations at time

zero, based on bus and DUT specification rules/goals.
OR

Constrained Random Generator - Create transactions on the fly,
each cycle, using constraints to build varying, but valid, bus
traffic, typically incorporating feedback from the simulation.

SUNY – New Paltz
Elect. & Comp. Eng.

Generators (Sequencers)
Testbench Generator
 Used if you can fully model the function of the DUT
 Depending on implementation, it must fully model the starting and

ending state of the DUT.

 Useful for targeting unique architectural features, which may
not be hit by a more random environment.

Constrained Random Generator
 Create interesting transactions across the full range of possible

operations using user selected criteria.
 Not required to model the timing of the HW implementation
 Allows the test bench to react to stimulus coming out of the

DUT as needed, or to influence future operations.

7

8

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 5

SUNY – New Paltz
Elect. & Comp. Eng.

Generators (Sequencers) cont.

Directed Testcases
 Specially designed to reach a specific state in the DUT
 Created when you know of scenarios you must hit, and neither

the testbench generator or random generator are likely to hit
the case naturally (or often enough), with existing bias controls.

 Examples:
 Filling up a buffer which is only filled if X writes are driven

close together.
 Forcing address re-use between sequences of writes and reads

to validate cache coherency rules.

SUNY – New Paltz
Elect. & Comp. Eng.

Environment Building Blocks 2

Monitor - A UVM monitor is responsible for capturing signal
activity from the design interface and translate it into
transaction level data objects that can be sent to other
components. (Source: https://www.chipverify.com/uvm/uvm-monitor)

 It should implement low level protocol checks only.
 Is the combination of signals valid for this cycle?

 Are the signals functionally valid based previous traffic?

 Is Parity or ECC correct?

 Higher level checks should be implemented by other objects
 Should monitor signals driven by a Driver, as well as outputs

from the design. (source all information from HW signals)
 Each object typically watches signals in only 1 direction

9

10

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 6

SUNY – New Paltz
Elect. & Comp. Eng.

Environment Building Blocks 3

Unit Monitor / Scoreboard - Collects transactions from
monitors and executes checks to validate function.
 Terms used for the object(s) tracking of operations. Could be

used for prediction of results, or looking up previous input
transactions to validate an output/response activity (when you
can't predict the order or timing of the output)

 Number, and content, of scoreboards depends on how you
divide up the checkers.
 Are some checks independent from others?

 Can those checks be executed without duplicating work between objects?

SUNY – New Paltz
Elect. & Comp. Eng.

Repeatable Environments

 Your environment should utilize a single random seed which
all future random numbers are based on.

 This provides a repeatable environment and testcase
configuration.
 All simulations using the same seed should run 100% the same.

 This feature is supported by the simulator.

 But how you use the random numbers may limit your
options for validating a design change.

11

12

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 7

SUNY – New Paltz
Elect. & Comp. Eng.

Random Seed example
 You discover a defect, and the designer makes a fix by adding

1 cycle of delay to that operation.

 Your generator environment is calling a random number
object every cycle, whether it uses it or not.

 Your testcase now runs differently due to the HW behaving
differently by 1 cycle.

 Goal: Validate fixes by re-running the same exact testcase
stimulus.

 Therefore, where and how you use random numbers does
matter.

SUNY – New Paltz
Elect. & Comp. Eng.

Functional verification approaches

Now that you've seen the basic structure….

 Black-Box approach

 White-Box approach

 Grey-Box approach

13

14

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 8

SUNY – New Paltz
Elect. & Comp. Eng.

Black-Box
 The black box has inputs, outputs, and performs some

function.

 The function may be well documented...or not.

 To verify a black box, you need to understand the function
and be able to predict/allow the outputs based on the inputs.

 The black box can be a full system, a chip, a unit of a chip, or
a single macro.

Some piece of logic
design written in

VHDL

Inputs Outputs

SUNY – New Paltz
Elect. & Comp. Eng.

Black-Box
Pros

 Env written based only on specs. (satisfies reconvergence model)

 Allows for simulation without the verification environment being
biased by knowing details of the implementation.

Cons

 May not be able to accurately check function without more
information

Some piece of logic
design written in

VHDL

Inputs Outputs

15

16

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 9

SUNY – New Paltz
Elect. & Comp. Eng.

White-Box

 White box verification means that the internal facilities are
visible and utilized by the testbench stimulus.

 Examples: Designer/Module level verification

DUT

Reg C

Reg B

Reg A

FSM
WR

RD

A
rb

ite
r

Inputs Outputs

SUNY – New Paltz
Elect. & Comp. Eng.

White-Box
 Pros - Closely monitor execution for cycle accurate checkers

 Cons - Environment construction biased by knowing the
exact implementation method. Easy to miss scenarios by
using this in-depth knowledge. "The implementation won't
handle X, so I'll never drive it."

DUT

Reg C

Reg B

Reg A

FSM
WR

RD

A
rb

ite
r

Inputs Outputs

17

18

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 10

SUNY – New Paltz
Elect. & Comp. Eng.

Grey-Box
 As the name implies, it’s a combination of the previous 2

methods. The environment accesses some limited number of
internal signals to enable more accurate checking.

DUT

FSM

A
rb

ite
r

Inputs Outputs

SUNY – New Paltz
Elect. & Comp. Eng.

Grey-Box
 Most environments use this approach! Prediction of correct

results on the interface is occasionally impossible without
viewing an internal signal.

DUT

FSM

A
rb

ite
r

Inputs Outputs

19

20

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 11

SUNY – New Paltz
Elect. & Comp. Eng.

Simulation & Regression
 Simulation - Executing a single test/testcase

 Regression:
1. Executing a suite of tests/testcases
2. Frequently executing the same testcases with different seeds

So, you developed an environment…..
 You kick off 5 simulations. They each fail with a different error
 When trying to triage the fails, you find multiple transactions

happening, making it hard to associate information and find the
root cause.

 What is your testing objective at this time?

SUNY – New Paltz
Elect. & Comp. Eng.

The Art of Verification

Two simple questions, one huge task.

1. Am I driving all possible input scenarios?
2. How will I know when it fails?

21

22

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 12

SUNY – New Paltz
Elect. & Comp. Eng.

Develop a Test Plan

 The Test Plan is your key to a successful environment. This is
developed by you, based on your interpretation of the
specification(s).

 It must be detailed to reflect your understanding of the
design, and how that design can be stressed.

 It should be written in a way to allow for comprehensive
review and feedback from your peers.

 This is your guidebook for developing the environment and
executing tests.

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Content Requirements

 Define the boundaries of the DUT.
 What blocks of logic will be included? Will a different

environment cover the logic that's not included?
 Hardware arrays/memories, or use a software behavioral?
 Any short-cuts should be defined and listed. Maybe a behavioral doesn't

act like the real HW. How can you validate that?

 Generation: What features will be exercised? What are the
min and max values for that stimulus? Do features need to
interact depending on configuration?

 Checkers: List out all the checks for validating each feature.
Be detailed.

23

24

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 13

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Define DUT Boundaries

 What logic will you be testing?

 What logic will not be tested (by you)?

 Is there additional logic being left out?

SUNY – New Paltz
Elect. & Comp. Eng.

Full Design

MISC Logic

Clk Logic

Test Plan: No Gaps in Testing
 If it wasn't verified, it probably has defects.

UnitMon1

UnitMon3

Bug

Bug

DUT1 DUT2

UnitMon2

25

26

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 14

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Continued

 Why does this matter?

 Defines options for the physical environment structure.
 How many generators will you have? Do they need to

coordinate at all?
 Should a configuration object be created to share details across

objects?
 How many monitors? Are they unique? Replicated?
 How can you implement your checkers? Does some

complicated check require additional information?

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Initializing the Environment
 How will the design be initialized?
 Just a reset signal toggling?
 Functionally writing registers/latches over a service bus?
 Setting latches directly using the simulator API?

 What will the content be?
 Do certain values need to be set in the design for it to function?
 Is there an initialization sequence that needs to be followed?
 What different configurations are supported?
 Should we randomize any default values before starting

simulation?
 Are there special settings to enable a certain feature?

27

28

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 15

SUNY – New Paltz
Elect. & Comp. Eng.

Simulation & Regression Revisited
So, you developed an environment…..

 Refer to your Test Plan for what to test first.

 Test a single transaction. If it works….

 Test several transactions of the same type. If it works….

 Try a different transaction type….

 Walk before you Run - It is tempting to fully enable all
features of your Generator immediately. But systematically
testing individual features will validate your Env and the
DUT faster.

SUNY – New Paltz
Elect. & Comp. Eng.

Simulation & Regression: Triage

Triage - Analysis of failures to determine root cause & severity
1. What reported the error, a Hardware checker in the design or

a verif env checker?
2. If a verif env checker, review the checker to make sure it is

correct.
3. Review the testcase and design configuration: Is the design in

a good configuration for that testcase? Was the traffic driven
by the testcase/generator legal?

4. Did you enable function which was not approved for testing?

Conclusion: Review your environment for correctness before
pulling in the designer or other developers.

29

30

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 16

SUNY – New Paltz
Elect. & Comp. Eng.

Sim & Regr: Tracing / Log Files

 Printing out what your environment is doing is the key to fast
and effective debugging.

 Output information so it is searchable!
 Be consistent in how you log details, following conventions

agreed with your team.
 Prefix lines with unique identifiers for your objects

 Use at least 2 verbosity levels for your messages
 Low – only required messages are printed
 High – detailed messages are printed, to give a deeper view

about everything your object is doing.

SUNY – New Paltz
Elect. & Comp. Eng.

Tracing / Log Files Example Output 1

Cycle 2 USB_Drvr0: Start Read

Addr=0x1234ABCD

UID=B8_D2

Cycle 3 USB_Mon0: Start Read

Addr=0x1234ABCD

UID=B8_D2

Cycle 3 USB_Mon1: Start Write Addr=0xAAAA1100 UID=B8_D1 Data=0x11119999

Cycle 4 USB_Mon1: Data=0x7777666655554444

31

32

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 17

SUNY – New Paltz
Elect. & Comp. Eng.

Tracing / Log Files Example Output 2

Cycle 2 USB_Drvr0: UID=B8_D2 Start Read Addr=0x1234ABCD

Cycle 3 USB_Mon0: UID=B8_D2 Start Read Addr=0x1234ABCD

Cycle 3 USB_Mon1: UID=B8_D1 Start Write Addr=0xAAAA1100

Cycle 3 USB_Mon1: UID=B8_D1 Data=0x1111999988880000

Cycle 3 USB_Mon1: UID=B8_D1 Data=0x7777666655554444

 You can easily search (grep) for the Object name, or UID, to see
what is happening for a specific bus.

 Clearly formatted log files will speed up the debug time of both
the Environment and Design.

SUNY – New Paltz
Elect. & Comp. Eng.

Simulation & Regression

Regression – definition 1

 Defect found. Get fix for DUT. Validate fix.

 When testcase is clean, it becomes part of the regression
suite.

 This is a set of tests to run to prove the design hasn't
somehow gotten worse.
 Maybe a fix breaks other functionality?
 Or a newly added feature has unexpected effects?

 Use a suite of regression tests to prove DUT stability it
maintained. (Definition 1)

33

34

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 18

SUNY – New Paltz
Elect. & Comp. Eng.

Simulation & Regression

Regression – definition 2

 Large scale execution of defined testcases with randomized
seeds.

 Each testcase is executed many times with new
randomization, to achieve variance in transaction content and
timing.

 This large number of simulations leads to stressing the
design, and getting good coverage of the function.

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Coverage

 Coverage methods and metrics should be defined in your test plan.

 Coverage events are used to track execution of the logic and are
compiled directly into the model.
 What states did it get into?
 Did buffers get filled?
 What features got exercised?

 The data is collected over many simulations, providing a picture of
how well the design has been tested.

35

36

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 19

SUNY – New Paltz
Elect. & Comp. Eng.

Coverage Example

 Functional coverage model for LIFO:

cover lifo_full: (lvl == 5)
cover lifo_empty: (lvl == 0)
cover ovr_run: lifo_full && wvalid
cover und_run: lifo_empty && rdvalid
cover dual_acc: rdvalid && wvalid
cover dual_full: dual_acc && lifo_full

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Coverage

 But wait, there's more!

 Environment coverage:
 Are generators being fully utilized?
 Did checkers get executed?
 Are all testcases still running?
 Did something in the environment stop working?

37

38

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 20

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Review
 Schedule reviews of the plan, environment, model, coverage

and processes used.

 Verification is an iterative process.

 Be prepared to adapt and change your strategy, and
environment, based on learning from defects found, or
coverage hit/missed.

 And most importantly: Was anything missed?

SUNY – New Paltz
Elect. & Comp. Eng.

Are we done yet?

Metrics to know if the design is likely good to be fabricated.

 How much regression was run ?

 What different kinds of tests were run ?
 Was the full range of settings in the environment actually run?

 How many defects were found? How many is enough?
Difficult question.
 Maybe the designer is that good?
 Maybe the design isn't complicated?
 Maybe your environment isn't stressing the DUT.
 How does the bug rate compare to other units in the design?
 Ask for a review of your environment from peers.

39

40

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 21

SUNY – New Paltz
Elect. & Comp. Eng.

Are we done yet? (cont.)

 New defect discovery rate
 Are you still finding new failures often? How often?
 Are recent defects minor or serious problems?

 Existing defects understood and resolved?
 Was anything glossed over and ignored?

 Hardware event coverage reviewed
 Not only were the events hits, but are the defined events

interesting?
 Are their other events which should be added for tracking?

 Did you fully review your environment with team members?

SUNY – New Paltz
Elect. & Comp. Eng.

Three Simulation Commandments

 Thou shalt stress thine logic harder than it will ever be stressed
again

Thou shalt not
move onto a higher
platform until the

bug rate has
dropped off

Thou shalt place
checking upon all

things

Thou shalt stress
thine logic

harder than it
will ever be

stressed again

41

42

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 22

SUNY – New Paltz
Elect. & Comp. Eng.

Multiple Environments
 All the planning has been for a single environment

 Projects typically employ multiple environments to stress the
design using several methods.

 As we covered earlier:
 Designer Sim
 Unit Sim
 Element Sim (multiple units)
 Chip / System Sim

 To reduce chance for human error, we want overlapping
environments.

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Overlapping environments
 Implement overlapping checkers/envs for redundancy.

UnitMon1

UnitMon3

DUT1 DUT2

UnitMon2

Bug

Bug

Miss

43

44

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 23

SUNY – New Paltz
Elect. & Comp. Eng.

Verification and design reuse 1

 Two aspects of re-use
 Environment re-use: Your checkers being re-used at a higher

level of sim.
 Design re-use: DUT being imported from, or sent to be used

by, a different team/project.

SUNY – New Paltz
Elect. & Comp. Eng.

Verification and design reuse 2

Your checkers being re-used at a higher level of sim

 Overlapping environments means other people re-using parts
of your environment.

 Your environment needs to be configurable to fit that higher
level of sim functionally and structurally.

 Can your environment work if Generators or Drivers were
removed? (Hint: The answer should be yes.)

 Can some checker objects be disabled/removed if sim has some
need to remove them? (Performance reasons or false fails)

45

46

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 24

SUNY – New Paltz
Elect. & Comp. Eng.

Verification and design reuse 3

Design re-use requires Trust

 How to trust it?
 Verify it.

 For reuse, designs must be verified with more strict
requirements
 All claims, possible combinations and uses must be verified.
 Not just how it is used in a specific environment.

SUNY – New Paltz
Elect. & Comp. Eng.

Additional Slides

47

48

EGC455
Design and Verification of SOC

9/10/2021

Functional Verification Part II 25

SUNY – New Paltz
Elect. & Comp. Eng.

Verification cycle

SUNY – New Paltz
Elect. & Comp. Eng.

Verification terminology
 Facilities: a general term for named wires (or signals) and latches. Facilities

feed gates (and/or/nand/nor/invert, etc) which feed other facilities.

 EDA: Engineering Design Automation--Tool vendors.

 Behavioral: Code written to perform the function of logic on the interface of
the design-under-test. A model that emulates the function of the design.

 Macro: 1. A behavioral 2. A piece of logic

 Driver: Code written to manipulate the inputs of the design-under-test. The
driver understands the interface protocols.

 Checker/Monitor: Code written to verify the outputs of the design-under-
test. A checker may have some knowledge of what the driver has done. A
check must also verify interface protocol compliance.

 BFM: The techniques for applying stimulus and monitoring the response of a
design is done by abstracting the operations of an interface – these are called
bus functional models

49

50

